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Abstract-Rotationally periodic (or cyclic) symmetry is exploited in the elastic stress analysis of
two-dimensional structures under arbitrary load conditions by the BEM. It is proved that the
coefficient matrices of the global boundary element equations for the rotationally periodic system
are block-circulant so long as a kind of symmetry-adapted reference coordinate system is adopted.
Furthermore, the computational convenience and efficiency which can be achieved by exploiting
this property and the structural geometric symmetry in the different phases of numerical implemen­
tation is demonstrated, and an efficient algorithm is presented. Numerical examples are given to
illustrate the advantages of such exploitation of symmetry in the context of the BEM.

INTRODUCTION

The boundary element method (BEM) is a numerical method based on integral formu­
lations, which offers several important advantages over 'domain' type techniques such as
the finite element method (FEM) and the finite difference method (FDM). However,
compared with the FEM, the BEM deals with asymmetric coefficient matrices, and the
calculations of the coefficients are relatively complicated.

The exploitation of symmetry in structural static, dynamic and stability analyses by
using the FEM has been presented in many references, see Thomas (1979), Healey (1988),
Wu (1988), Dinkevich (1991), Liu and Wu (1993) amongst others, and now it is common
practice to consider the use of symmetry in engineering analysis problems. In the context
of the BEM, the exploitation ofaxisymmetry and some simple reflection symmetry cases
has been demonstrated by Rizzo and Shippy (1979), Mayr et al. (1980), Crouch and Starfield
(1983), Manolis and Beskos (1988), Saigal et al. (1990) etc., where many advantages in
convenience, accuracy and efficiency have been observed. However for another class of
symmetric engineering structures such as cyclic (rotationally periodic) structures and regu­
lar-polygonal structures which have been well investigated by using the FEM, except the
work ofMaier et al. (1983), there is an evident deficiency of the BEM approach, in particular
from the application point of view.

The present paper is a further effort to make up such deficiency, and it is expected that
it will bring the exploitation of symmetry into more practical use in the engineering design
practice by using the BEM. For these purposes, instead of considering more general cases,
this paper simply uses the two-dimensional elastic stress analysis problem and two practical
examples to demonstrate the full advantages of the use of symmetry in the BEM. The
contributions of the present paper are twofold. Firstly, instead of assuming the special
properties of the system matrices of the BEM equations for cyclic structures, it adopts a
simple, direct and explicit way to prove the block-circulant property of the coefficient
matrices which the systems enjoy. This approach, together with those basic concepts intro­
duced, will enable the further exploitation of other types of symmetry. Secondly, the
computational convenience and efficiency of such exploitation are fully discussed and
demonstrated by means of two numerical examples.
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ROTATIONALLY PERIODIC SYMMETRY AND COMPUTATIONAL MODEL

A structure or a computational region 0 is said to possess rotationally periodic
symmetry of order N when its geometry, physical properties and constraint conditions are
invariant under the following N symmetry transformations (or operations)

4h=(2n/N)(k-l) (k=I, ... ,N), (I)

where <Pk represents a rotation of 0 about its axis of rotation with an angle of 2(k - I)n/N.
The difference between axisymmetry and rotationally periodic symmetry is that, with
axisymmetry a structure (or a region) can rotate any angle about its axis of rotation without
change, but with rotationally periodic symmetry a structure (or region) can only rotate N
different angles without change, see eqn (1). It is convenient that the axis of rotation is
defined as the Z-axis in a rectangular or cylindrical coordinate system. For example, Fig.
1(a) shows a plane region possessing rotationally periodic symmetry of order N = 6; Fig.
2 shows a plane infinite region with an internal square hole, which can be regarded as a
rotationally periodic system of symmetry order N = 4.

When the BEM is employed to analyze a rotationally periodic system 0, to make
full use of its symmetry the following two fundamental ~ints, which are also the basic
requirements of the method given in this paper, should be followed. The first one is to
discretize the computational boundary in a symmetric way such that the boundary element
(BE) discretization model of 0 keeps the original symmetry of the system. The second
one is to adopt a symmetry-adapted coordinate system, which will be called "symmetric
coordinate system", as a reference system for nodal displacements and forces on the
boundary. To these ends, the next paragraph briefly shows how to form a BE computational
model of symmetric system.

Designating the boundary of 0 as C, it is obvious that C can be naturally divided into
N identical parts, which will be called symmetric regions in this paper. Ordering these N
parts in anticlockwise sequence, and designating them as Ck (k = 1, ... , N), it follows that:

(2)

This equation means that Ck can be obtained from C ll which is called "basic region"
and can be arbitrarily selected from those identical parts, by the application of the symmetry
operation <Pb and all these N different Ck (k = 1, ... , N) cover C. Discretizing C 1 only, one
can then obtain the discretization model of C by using eqn (2), which satisfies the above
first requirement. For any node A I in the basic region, there are certainly another N - 1
different nodes which are located symmetrically on the other N - I symmetric regions. All

y
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(a) (b)

Fig. 1. A rotationally periodic plane plate with N = 6. (a) The symmetric node orbit OA and its
corresponding symmetric coordinate system for reference; (b) the basic region.
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Fig. 2. An infinite plate with a square hole at the center.
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these N nodes constitute a set of symmetric nodes, which is called "symmetric node orbit"
(or just "orbit") and is designated as 0A

(3)

For the N nodes of 0A, the reference coordinate directions of node Al which belongs
to the basic region are first defined, then the reference coordinate directions for the other
N - 1nodes can be obtained from those ofnode A I through the last N - 1different symmetry
transformations of eqn (1), see Fig. 1(a) for example. If the line B I-B2 shown in Fig. l(b)
is regarded as the basic region C 1 for the computational boundary of Fig. l(a), because of
cyclic symmetry of the computational model, it is readily seen that the two interface nodes
of C 1 belong to the same orbit DB, i.e. B 1 C DB and B2 C DB. In the following, only those
nodes which are located on the internal part of C I and the "right" interface of C I are
regarded as belonging to the basic region. For example, as the two interface nodes of the
basic region C 1 in Fig. l(b), only B j will be regarded as belonging to C I and B 2 will then
be regarded as belonging to C2; in the case of four computational nodes being used on the
line BI-B2, only three nodes {B j = 1,2,3} will be regarded as belonging to C I. If the
number of the nodes belonging to C I is denoted as M, then the total computational nodes
on C will be NM.

It should be mentioned that, the introduction of some basic concepts in this section
(e.g. symmetric coordinate system, symmetric node orbit etc.) is not only for the convenience
of the following discussions but will also benefit the exploitation of general symmetry cases
as it has in the finite element (FE) analysis of general symmetric structures, see Wu (1988).

THE PROPERTIES OF THE GLOBAL COEFFICIENT MATRICES

Based on Somigliana's identity, the BE equations can be expressed as:

HU=GF+B, (4)

where U and F are the vectors of the displacements and tractions on all the nodes of C,
respectively, Hand G are the global coefficient matrices of the BE system and B is the
vector accounting for the body forces.

Consider a rotationally periodic system. By means of the concept ofsymmetric regions,
U and F can be written as

(5)

(6)

in which Uk is a vector which collects the displacements on the nodes belonging to kth
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symmetric region, and Fk represents the corresponding traction vector. In such an ordering
way, eqn (4) can be written as:

... H

lN

] lUI) [Gil... H 2N u 2 G 21

H~N ~N G·~l
(7)

The properties of the global coefficient matrices Hand G in eqn (7) will be examined in the
following, note that the symmetric coordinate system is adopted as the reference system for
the components ofU and F. To this end, the influence coefficients of a rotationally periodic
system will be studied first below.

The displacement component up at a field point Q in the i-direction, which is excited
by a concentrated forcef~ applied at a load point P in thej-direction, is:

up = GWf~, (8)

where GW is the displacement influence coefficient (Kelvin's singular solution) which can
be expressed, for example, for the two-dimensional plane strain problem in a rectangular
Cartesian coordinate system X- Y as :

in which

g(x, y) = 4n(~ ~v) In [(x-cY+(y-cYl 112.

(9)

(10)

In eqns (8)-(10), G is the shear modulus; v is the Poisson's ratio; Jij is the Kronecker
delta; Cx and cy are the X- and Y-projections of the distance between points P and Q,
respectively; i, j = x, y; and Xx is X, xy is y. Observing Fig. 3, let P and Qbe another two
points on the boundary, which come from P and Q through a symmetry transformation

Fig. 3. Illustration ofthe load points and the field points on the boundary contour C of a symmetric
domain n and their reference directions: P, P load points; Q, Q field points; R; R integration

points.
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(rotation about the axis of rotation) IX = cPk (k = 1, ... ,N), respectively. Similarly, cor­
responding to the integration point R which has coordinates x and y, another integration
point R can be obtained from R through the same symmetry transformation IX = cPk.
Designating the coordinates of Ras i and y, it follows:

i = x cos IX - Y sin IX, y = x sin IX + Y cos IX,

Cx = Cx cos IX-Cy sin IX, cy = Cx sin at+cy cos IX,

(11)

(12)

where Cx and cy are the projections of the distance between Pand Q. Note that in eqns (9)
and (10) it has been assumed that the reference directions for points P and Q are the same
as the X- Y coordinate system. For point P, its reference directions are obtained from those
of point P through the corresponding symmetry transformation; and for point Q, its
reference directions are obtained from Q by using the same rule. This in fact is the way
of the symmetric coordinate system being obtained. If there are two concentrated force
componentsf~l andf:l acting on point j5 and referring to its own reference directions, one
can easily transform them into the components referring to the reference directions of point
P:

f p fP fP' fP fP' fPx = xl cos IX- yl sm IX; . y = xl sm IX+ yl cos IX. (13)

Using eqns (8)-(lO), the displacement components u~ and u9 of point Q, which refer
to the reference directions of point Q, can be obtained as:

o - GOP( - -)fP GOP{ - -)fPUx - xx x, y x + xy x, Y y'

0_ GOP(- -)fP GQP{- -)fPuy - yx x, y x + yy x, Y y, (l4)

in which the displacement influence coefficients are referring to the integration point Rand
given by:

(IS)

and

(16)

Transforming the displacement components u~ and u9 into components U~I and u91' which
refer to the reference directions of point Q, and noting that the reference directions of point
Qare obtained from those of point Q by a symmetric rotation at = cPb one has:

U9l = u9 cos a+u9 sin a; U91 = -u~ sin at+u9 cos rl. (17)

Substituting eqns (11)-(16) into (17), and only taking one of the two force components
into account, it follows:

<! GOP (- -)fP GQP( )fPUti = il,jl x,y jl = ij x,y jl (18)

in which G9tj I (i, y) is the displacement influence coefficient relating points Pand Q, and
it refers to the integration point R. This influence coefficient specifies the displacement at
field point Q in the ii-direction of the reference directions of point Q, due to a unit
concentrated force applied at load point is in thejI-direction of the reference directions of
point P. Equation (18) shows that GR~I(i,y) is equal to GW(x,y). It is readily seen that
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although the previous discussion assumed that points P and Q have the same reference
directions, it is not difficult to prove that eqn (18) still applies if P and Q have different
reference directions so long as the reference directions for points P and Q are adopted in
the way described above. From eqn (18) one can conclude that, for a rotationally periodic
system, the influence coefficients corresponding to any two symmetric sets of points and
referring to two symmetric integration points, respectively, are equal if a symmetry-adapted
system is used, i.e. the influence coefficients have the same symmetric properties as the
system itself under a symmetry-adapted system.

Since the coefficients in eqns (8) and (18) comprise the fundamental solution for the
two-dimensional elastostatic problem, and because of the properties of the fundamental
solution under the symmetric coordinate system and the symmetric form of the boundary
element discretization model, it can be readily verified from the boundary element procedure
that, if the displacement and traction vectors for kth symmetric region (k = I, ... , N) are
ordered in the following way:

Fk [/' k r k ('k ('k I' k rk] T:= . xl,. ,1'1', x2~ . .1'2""'_ x,H, . .I'M (19)

where all the components are referring to the symmetric coordinate system, then matrix G
in eqn (7) satisfies the relation:

Gij = Gi+k.j+k (i,j = 1, ... ,N; k = 1, .. . ,N)

I.e.

(if i+k > N, it reads as i+k-N ; similarly for j+k)

Gil = G 22 ,G I2 = G 23 , •.. ,GI.N
-

I = G 2N,G 1N = G 21
;

Gil = G 33 ,G 12 = G 34
, ... ,G'·N-l = G 31 ,G IN = G 32

; ••••

(20)

(21)

Therefore it is proved that matrix G is a block-circulant matrix. In the same way one can
reach the conclusion that matrix H is also a block-circulant matrix. Designating

matrices G and H in eqn (7) can be written as:

[

G
I

G
2

••• GN ] [H
I

H
2

••• U'" ]
G= ~N~I G~ I ; H= ~N~I H~_1

G 2 G 3 G I H 2H 3 HI

(22)

(23)

Note that, unlike the stiffness matrix of FE equations, in general these two matrices are not
symmetric matrices.

PARTITIONING ALGORITHM

From the concept of the symmetric node orbit 0 A, it is readily seen that the dis­
placement vector dA

dA = [d~,d~, ... ,d~f (dmaybeoneofutanduy ) (24)

where d~ (k = I, ... , N) represents the displacement of node Ak which belongs to the orbit
oA and is located on the kth symmetric region, constructs an invariant subspace in the
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whole displacement space under all symmetry transformations. Using the following N
complete symmetrized basis vectors:

ej = Co = Jl!N[I, 1, ... , If;

eZm = Cm = J2{N[cosmfJl,cosmfJz, ,cosm8NV,

eZm+l = Sm = j2/N[sinmfJ b sinm(Jz, ,sinmfJNf,

(m = 1, ... , [(N -1)/2]; fJk = 2rc(k-l)/N, k = 1, ... , N);

eN =CN/Z = Jl!N[1, -1,1, -1, ... ,1, -If (when N is even) (25)

where [(N -1)/2] is the largest integer which does not exceed (N-1)/2, the vector dA can
be expanded as :

N

dA= L: a~ei = [el ez .. , eN]dA
i= 1

(26)

in which a~ (i = 1, ... , N) is the expansion coefficient of the displacement vector dA on the
ith new basis vector e;, and it is termed generalized displacement in this paper. As all the
new basis vectors construct a set of orthogonal unit vectors, therefore it can be obtained
from eqn (26) that

Similarly, for the traction vector tA of the orbit 0 A

tA = [d, d, ... ,t1f (t may be one off>: andh)

one has:

N

t A = L: l~ei = [el ez ... eN]tA
i= 1

(27)

(28)

(29)

(30)

where i~ will be called generalized traction. Thus using eqns (26) and (29) for all the orbits,
one can obtain:

U = RU; F = RF; R = [ei} I]T (i,j = 1, .. . ,N), (31)

where I is a 2M-dimensional unit matrix, ei} is the jth element of the basis vector ej, Uand
F are called global generalized displacement and traction vectors, respectively,

(32)

and F has a similar form. Left-multiplying the two sides of eqn (7) by R T, and substituting
(31) into (7), one has:

(33)

in which

(34)

Substituting eqns (23) and (31) into (34), one has:
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A = [Ao); G = [GO); B= [B IT, B 2T, ... , BNT)T;

N [N ]Aji = L HI I (eJ,k+N-I+ I ) (ejk) (i,.i = I, ... , N) ;
1= 1 k= 1

N
_. " kBI = L.. eikB (i = 1, ... , N)

k=1
(35)

and GO has the same form as Aij. Note that if the second subscript k+ N - /+ I in ei,k+N-I+ I

is greater than N, it will be read as k - /+ 1. Further by using eqn (25) it can be obtained
that:

(36)

in which $ represents the direct sum of matrices, i.e. the matrices A and Ghave block­
diagonal form, and

(37)

N N

App=Aqq = LH1cos(/-1)mp; Apq= -Aqp= IH1sin(/-I)mp
1= I 1= I

(P = 2n1N; p = 2m,q = 2m+ 1; m = 1, ... , [(N-1)/2]) (38)

A NI2,NI2 = ANN = (H 1_ H 2 +H 3
- H 4 +... - H N) (when N is even), (39)

Gmm (m = 0, ... , [NI2]) have the same form as Amm • Based on eqn (36), it is obvious that
the solution problem of eqn (33) can be naturally partitioned into [(N+ 2)/2) decoupled
subproblems:

(40)

where

- -I - -N .V o = V; V NI2 = V (when N IS even);

Um = [OPT, uqTV (p = 2m, q = 2m+ 1; m = 1, ... , [(N -1)/2]) (41)

and Fm, Bmhave the same form as Um'
Therefore instead of solving the original system eqn (7), now one only needs to solve

a series of independent small subproblems as shown in eqn (40). Obviously the partitioning
of the original problem into a series of small subproblems will lead to a high efficiency of
computation which will also be demonstrated by the numerical examples given in the next
section.

Consider a special case in which the given load distributions and given displacement
conditions have the same rotationally periodic symmetry as the system. In this case, it is
obvious that all the body force subvectors in eqn (7) satisfy:

so that from eqn (35) it follows:

(42)

B2 = B3 =···=BN = 0, BI = jNBl.

Similarly, if dA is given, one has

(43)
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a~ io 0, a~ = 0 (i = 2, ... , N)

and if tA is given, it follows

t~ io 0, t~ = 0 (i = 2, ... , N).

287

(44)

(45)

All these imply that except for the first subproblem, the other [NI2] subproblems have zero
solutions, therefore one only needs to solve the first subproblem. Consider another special
case for which the load distributions etc. have the following property:

(46)

which, by using eqns (25) and (35), results in

(47)

and hence only the second subproblem needs to be solved. From the above discussions it
can be deduced that the use of symmetry of the system will provide a special advantage for
making use of the symmetry of the load conditions, and one need not introduce any
special boundary conditions for such purpose, it makes the method presented here even
more effective and convenient.

NUMERICAL EXAMPLES

The computational convenience and efficiency achieved in the analysis of rotationally
periodic systems by using their symmetry are further demonstrated here through the numeri­
cal solution of the following two nontrivial two-dimensional elastostatic problems, which
also verify the generality of the method. For these problems, the Poisson's ratio is 0.2 and
the Young's modulus is 0.7 X 10 5 psi. All the examples were solved by using the direct BE
algorithm and constant elements on a HP-9000/870 computer.

I. A disk with eight symmetrical holes under a torsion
Figure 4 shows the dimensions of the structure, the load distribution and the constraint

conditions. Figure 5(a) shows the basic symmetric part, in which dashed lines are the inter­
boundaries of the basic region with the adjacent symmetric parts, but only the solid curves
belong to the computational boundaries and were meshed. The computed results were
compared with a detailed FE analysis, and a very good agreement has been observed.
Figure 5(b) shows the computed deformation of the inner boundary of the basic symmetric
part. In order to show the effect of the symmetry order N to the computation efficiency,
this problem was deliberately solved for the following three cases: case A, it was solved
without using any symmetry properties; case B, its rotationally periodic symmetry of order

Fig. 4. A disk with eight symmetrical holes under a torsion.
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0.2
53 UI(FEM)

I!ill Ur(BEM)
0.15

II!!!IIUt{BE~
0.1

0.05

0 K

0 2 4 6 8
Fig. 5. (a) The basic symmetric part; (b) the BEM and FEM results of the radial displacements V,

and tangential displacements V, on the inner boundary, IJ = nk/32-n/8.

N = 8 was fully exploited; and case C, it was only regarded as a rotationally periodic system
with the symmetry order N = 4, so that the corresponding basic region would contain two
basic symmetric parts. These three cases gave the same results, but took very different CPU
times and required different amounts of computer storage, as given in Table I. Note that,
in Table I, PI represents preprocessing, P2 solving equation, P3 postprocessing, the unit
of time is the second, and storage means the number of the elements of real array needed.
The special form of the load distributions for this problem resulted in only the first
subproblem (m = 0) to be solved for each of cases Band C.

2. An infinite plate with multi-holes
As shown in Fig. 6, the problem deals with an infinite plate containing a centrally

located hole, which is symmetrically surrounded by another four small holes and subjected
to an uniaxial tension p at infinity. Because the symmetry order for this problem is N = 4,
therefore it was divided into three subproblems. However the special form of the load
distributions for this problem resulted in only two subproblems, i.e. first (m = 0) and third
(m = 2) ones, to be solved. Figure 7 shows nondimensional stresses (Jxx/p and (Jyvlp along
the X- and Y-axes.

CONCLUSIONS

Cyclic symmetry has been exploited for the analysis of rotationally periodic systems
when using the BEM. Adopting a symmetry-adapted reference system, the block-circulant

Table I. Case studies for comparison of CPU timing
and storage with and without using symmetry

Case

A
B
C

PI

14.47
14.06
14.15

P2

163.75
2.66
5.73

P3

2.65
2.65
2.65

Storage

263,168
38,018
50,432
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y

Fig. 6. An infinite plate with multi-holes subjected to uniaxial tension p at infinity.
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-0.3

-0.2

-0.1

matrix property of the corresponding coefficient matrices of the global BE equations has
been proved, and then a partitioning algorithm was proposed.

A number of advantages can be gained by using cyclic symmetry in the BEM, which
include:

(l) Instead of solving the original BE system equations, one only needs to solve a
series of small subproblems. The sum of the dimensions of all these subproblems is equal
to that of the original problem. Thus the computational efficiency is greatly increased.
Since all the subproblems are independent, modern parallel processing computers can be
profitably employed.

(2) The BE modeling can be limited only on any liN part of the whole computational
boundary, and rather than to form the global coefficient matrices, only N small submatrices
are needed for each coefficient matrix.

(3) The load distributions may be arbitrary, and the symmetry of the load conditions
can be naturally exploited.

0.1 ,-------------------,

o t-----""7";;al,...... L.!!.-=.-=.~.~ !c'.~ ~-----l............ . ~ ~ .
•• •GxJp ••• ••

• •• ••• •
• •

•• Gyy/p

•
-0.4 •

•
Distance X

-0.5 -'----.......L-__.l-__--L L-__--.J

10 12 14 16 18 20

3,---------------------,

2

• •• ••• •-.. .-
••••• Gxx/p ••••

••••••••••••••

Gyy/p
••••••••••••••••••••••••••••••

• • • • Distance Y •O-'-------'-----'-------'---_-'---__--.J
10 12 14 16 18 20

Fig. 7. Normalized stresses uxx/p and Uyy/p along x and y axes.
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The method can be readily extended and will be of great value to: three-dimensional
problems, free vibration and dynamic problems and the engineering systems with other
symmetric properties.
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